ALCOHOL CONSUMPTION, BEVERAGE PRICES AND MEASUREMENT ERROR

Douglas J. Young, Ph.D.*
djyoung@montana.edu

and

Agnieszka Bielinska-Kwapisz, Ph.D.
akwapisz@montana.edu

*Corresponding Author
Department of Agricultural Economics and Economics
Montana State University
Bozeman, MT 59717-0292
Voice: (406) 994-5622
FAX: (406) 994-4838

Version 2.1
October, 2002
Abstract

(1) **Objective:** Alcohol price data collected by the American Chamber of Commerce Researchers Association (ACCRA) have been widely used in studies of alcohol consumption and related behaviors. A number of problems with these data suggest that they contain substantial measurement error, which biases conventional statistical estimators toward a finding of little or no effect of prices on behavior. We test for measurement error, assess the magnitude of the bias, and provide an alternative estimator that is likely to be superior. (2) **Method:** The study utilizes data on per capita alcohol consumption across U.S. states and the years 1982-97. State and Federal alcohol taxes are used as instrumental variables for prices. (3) **Results:** Formal tests strongly confirm the hypothesis of measurement error. Instrumental variable estimates of the price elasticity of demand range from -.53 to -1.24. These estimates are substantially larger in absolute value than ordinary least squares estimates, which sometimes are not significantly different from zero or even positive. (4) **Discussion:** The ACCRA price data are substantially contaminated with measurement error, but using state and Federal taxes as instrumental variables mitigates the problem.
I. Introduction

Alcohol consumption is an important public policy issue because of its associations with drunk driving, violence, and diseases such as cirrhosis of the liver. How these behaviors respond to changes in the price of alcohol is important for a variety of policy purposes. A key problem in obtaining reliable estimates of price responses is the quality of the available data, which may contain substantial measurement error (Ornstein and Levy, 1983, Leung and Phelps, 1993, and Young, 1993). One frequently-used set of price data is from ACCRA – formerly known as the American Chamber of Commerce Researchers Association. These data report retail prices for beer, wine, and spirits. They have been used by Beard et al. 1997, Grossman et al. 1998, Kenkel 1993, Manning et al. 1995, Markowitz 2000, Nelson 2001, Sloan et al. 1994, and Young and Likens 2000, among others.

However, a number of problems with the conceptual and practical aspects of the ACCRA survey suggest that the data may contain substantial measurement errors. The specific beverages for which prices are recorded – currently a six pack of Heinekin’s beer, a 750 ml bottle of J&B Scotch, and a 1.5 liter bottle of Gallo or Livingston Cellars Chablis – may not be representative of all alcohol prices, or of the prices which are most related to alcohol abuse. These beverage definitions have changed over time, requiring adjustments to create a consistent time series. Errors may also be inadvertently introduced by local economic development agencies, which are responsible for data collection and reporting. Although ACCRA provides detailed instructions, personnel are not specifically trained as data gatherers (ACCRA 2002). ACCRA instructs the data gatherers not to sample prices from discount stores, even if they are a majority of the overall market. The ACCRA survey covers only urban areas. The sample of stores may vary from quarter
to quarter in each city, and the sample of cities that report has grown dramatically over time as well as varying from quarter to quarter. Finally, although the data are reviewed for accuracy by a panel of “volunteers,” the alcohol components are a small part of the overall index (about 1.7%), and thus they may not be fully scrutinized.

Measurement error in the price data implies that the ordinary least squares (OLS) estimator commonly used in regression analysis is biased and inconsistent (Greene, 2003, Section 5.6.1). In addition, beverage prices may be endogenous in the sense that higher demand may result in higher market prices (Manning et al. 1995, p. 126). In simple models, both measurement error and endogeneity cause the estimated price response to be biased away from negative values. That is, the conventional OLS estimator may substantially underestimate how much consumers decrease consumption in response to an increase in price.

An alternative to the ACCRA data is to use excise taxes as measures of the price of alcohol. However, taxes do not accurately measure prices either. One reason is that combined state and Federal excise taxes typically amount to only about 10-15 percent of retail beverage prices (Young and Bielinska-Kwapisz, 2002). In addition, spirits and wine taxes are themselves difficult to measure accurately. In eighteen “control” states liquor is sold through state stores and is subject to ad valorem markups and/or excise taxes. In these states, the markup is in part a tax, because the government receives the “profits” from the markup, but it is difficult to separate the implicit tax rate from the normal costs of wholesaling and retailing liquor. Tax rates for all types of beverages also vary according to alcohol content, place or volume of production, size of container, place purchased (on- or off-premise), and there may be case or bottle handling fees.

These problems with price data in general and spirits and wine taxes in particular have led some researchers to conclude that beer taxes are the best available indicator of the cost of alcohol
(Chaloupka, et al., 1993, pp. 169-70, Freeman, 2000, p. 329). However, Young and Bielinska-Kwapisz (2002) show that beer taxes alone are not highly correlated with either the ACCRA price data or national trends in the detailed CPI for alcohol. But a broader set of tax variables - including not just beer taxes but also liquor and wine per unit excise taxes, percentage excise taxes, and state markups - provides a set of instrumental variables which, in principle, can resolve the problems with the price data.

Briefly, the instrumental variable technique involves two estimation steps. First, the alcohol price data are regressed on the tax and other variables, and the predicted prices are retained. In the second step, the response of alcohol consumption to beverage prices and other variables is estimated, using the predicted prices from the first step as right hand side variables. The important result is that these predicted prices are “cleansed” of measurement error and demand effects, so that the resulting estimator is unbiased in large samples (Greene, 2003, Section 5.6.2).

II. Methods

The analysis uses annual data for 49 states (excluding Hawaii, because price data are not available) plus the District of Columbia over the time period 1982 - 1997. Consumer demand for beverage alcohol is modeled as a function of price, income, and other socio-economic variables. Consumption of beer, wine, and spirits are shipments data from the Beer Institute (1997), divided by total population. Quantities of beer, wine, and spirits are multiplied by their average alcohol content (respectively, 4.5%, 11 %, and 40%) and expressed as gallons of pure ethanol per capita. The dependent variable is (the logarithm of) total alcohol consumption. A detailed description of the price and tax variables is provided in Young and Bielinska-Kwapisz (2002). The estimated equations always include dummy variables for each year, which control for unmeasured changes that are common across states, such as beverage definitions or changes in attitudes. In addition,
state-specific dummy variables are also sometimes included, in order to control for unmeasured differences across states that are constant over time.

Hausman (1978) established a test for correlation between a right hand side variable and the disturbance term, which would result from either measurement error or endogeneity of prices. We employ a version due to Davidson and MacKinnon (1989, 1993). Thus, we first test for measurement error and/or endogeneity using a Hausman test. The null hypothesis of no measurement error is strongly rejected, and we proceed to estimate alcohol demand using instrumental variable methods.

For these techniques to be effective, the tax variables must satisfy two properties: They are significantly correlated with true alcohol prices, and uncorrelated with the disturbances in the consumption equation. Young and Bielinska-Kwapisz (2002) show that state and Federal excise taxes and markups explain about thirty percent of the variation in alcohol prices in pooled cross section time series data similar to that employed in this study, and thus satisfy the first property. However, it is possible that state taxes and other alcohol policies reflect unmeasured attitudes toward alcohol, which are captured in the disturbance term of the consumption equation. In particular, taxes may be higher in states in which there is stronger anti-alcohol sentiment, or taxes may change over time in response to changes in attitudes toward alcohol. If this is the case, taxes are correlated with the disturbance and not proper instrumental variables (Manning et al., 1995, footnote 4).

III. Results

Estimates of the demand for alcohol are presented in Table 1. The first column presents ordinary least squares estimates with state dummy variables excluded. The estimated price elasticity of demand is -.345 and significantly different from zero. However, a Hausman test
Column 2 presents two-stage least squares estimates of alcohol demand using the tax variables as instruments for the price variable. As expected, the estimated price elasticity of demand is larger than in column 1: A one percent increase in alcohol prices is estimated to reduce consumption by 1.24 percent - a response that is 3 ½ times larger than the OLS estimate.

Most of the other coefficient estimates also conform to theoretical expectations. The estimated income elasticity is positive, although only about .1. A one percentage point increase in the share of the population aged 18-29 is estimated to increase per capita alcohol consumption by about three percent. A one percentage point increase in the population share over age 65 is estimated to reduce consumption by about one-half of one percent, and increasing the legal drinking age by one year is estimated to reduce consumption by one percent, although neither of these estimates is statistically significant. The population residing in dry counties and the religion variables are each negatively and significantly related to consumption. Finally, tourism has a statistically significant and large, positive relationship with consumption. (The two "states" with the highest alcohol consumption are Washington DC and Nevada, both of which have large tourism industries.)

What happens when state-specific dummy variables are included (Column 3)? The overall explanatory value of the equation (R-squared) increases markedly, reflecting two important features of the data: Most of the variation in consumption is cross-sectional, and much of it is not accounted for by price, income and the other control variables. The price elasticity is small in magnitude and not statistically different from zero when the estimation method is OLS. We again perform the Hausman test for measurement error, this time including the state dummies among the instruments. The null hypothesis of exogeneity is even more strongly rejected (F=46.7,
The fourth column presents two stage least squares estimates with the state dummies included. The estimated price elasticity is statistically significant and again much larger in absolute value than using OLS: A one percent increase in the price of alcohol is estimated to reduce consumption by about three-fourths of one percent.

The estimated coefficients of some of the control variables, however, display unexpected signs when state dummies are included and others become statistically insignificant. Apparently, there is insufficient within-state variation in the control variables to provide reliable estimates when state dummies are included.

The last two columns therefore display estimates of alcohol demand with only price, income, and the state and time dummies included. The OLS estimate of the price elasticity is small, positive and insignificant (column 5), but a Hausman test again strongly confirms measurement error and/or endogeneity (F=25.4, p=.0000). Using two stage least squares, the estimated price elasticity continues to be statistically significant and has a magnitude of about minus one-half.

IV. Discussion

The main point of this paper is that in any application using the ACCRA data, the problem of measurement error must and apparently can be confronted using comprehensive measures of state and Federal alcohol taxes as instruments. For example, Manning et al.’s (1995) finding that heavy consumers of alcohol are essentially unresponsive to prices may be in part an artifact of measurement error. Since measurement error is likely to bias the estimated response for both heavy and light consumers, the responses of both groups are probably underestimated. It may remain true, however, that heavy drinkers are less responsive to prices than are light drinkers. Using instrumental variable methods, our estimates indicate somewhat more price responsiveness than do
previous studies using aggregate data (Leung and Philips, 1993). However, we are somewhat less confident that taxes are completely satisfactory instruments to deal with endogeneity bias, because taxes may be correlated with unmeasured attitudes or other alcohol policies.

Acknowledgments: This research was supported by the National Institute on Alcohol Abuse and Alcoholism under grant number R03 AA13264. The authors thank Rob Fleck, Jon Nelson, Sourushe Zandvakili, participants at the 2001 WEA International Conference, and two anonymous referees for helpful comments.
REFERENCES

Quinn, Bernard, Herman Anderson, Martin Bradley, Paul Goetting, and Peggy Shriver. *Churches and church membership in the United States 1980* Atlanta: Glenmary

<table>
<thead>
<tr>
<th>Estimation Method</th>
<th>OLS</th>
<th>2SLS</th>
<th>OLS</th>
<th>2SLS</th>
<th>OLS</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Dummies Included?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ln (Alcohol Price)</td>
<td>-.345</td>
<td>-1.24</td>
<td>-.055</td>
<td>-.750</td>
<td>.027</td>
<td>.530</td>
</tr>
<tr>
<td></td>
<td>4.1</td>
<td>4.4</td>
<td>1.4</td>
<td>5.5</td>
<td>0.6</td>
<td>4.8</td>
</tr>
<tr>
<td>ln (Income per Capita)</td>
<td>.103</td>
<td>.138</td>
<td>.497</td>
<td>.764</td>
<td>.524</td>
<td>.663</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>2.3</td>
<td>11.3</td>
<td>10.6</td>
<td>11.3</td>
<td>11.5</td>
</tr>
<tr>
<td>Pop Age 18-29 (%)</td>
<td>.049</td>
<td>.031</td>
<td>.022</td>
<td>.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.7</td>
<td>3.9</td>
<td>7.0</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop Age > 65 (%)</td>
<td>-.004</td>
<td>-.005</td>
<td>.018</td>
<td>.034</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1.5</td>
<td>3.4</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal Drinking Age</td>
<td>-.010</td>
<td>-.010</td>
<td>.003</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop in Dry Counties (%)</td>
<td>-.003</td>
<td>-.002</td>
<td>.001</td>
<td>-.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td>3.5</td>
<td>0.9</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic (%)</td>
<td>-.000</td>
<td>-.001</td>
<td>.002</td>
<td>.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>2.0</td>
<td>1.4</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mormon (%)</td>
<td>-.012</td>
<td>-.010</td>
<td>-.016</td>
<td>-.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>10.5</td>
<td>3.2</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Baptist (%)</td>
<td>-.006</td>
<td>-.004</td>
<td>.036</td>
<td>.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1</td>
<td>3.9</td>
<td>12.2</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Religion (%)</td>
<td>-.006</td>
<td>-.004</td>
<td>-.005</td>
<td>-.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td>4.5</td>
<td>5.8</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourism (%)</td>
<td>.047</td>
<td>.045</td>
<td>-.020</td>
<td>-.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.9</td>
<td>15.0</td>
<td>3.1</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.68</td>
<td>6.49</td>
<td>-2.58</td>
<td>.066</td>
<td>-1.45</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>4.3</td>
<td>11.6</td>
<td>0.1</td>
<td>6.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>.67</td>
<td>.62</td>
<td>.98</td>
<td>.97</td>
<td>.97</td>
<td>.96</td>
</tr>
</tbody>
</table>

Notes: Year dummies for 1982-96 are included in every equation; the base year is 1997. When state dummies are included, the base state is Alabama. Instruments for the 2SLS estimates include the combined state plus Federal excise taxes on beer, spirits, and wine, and for control states, the percentage excise taxes and/or markups on spirits and wine, as applicable. Price is treated as endogenous. N=761. Mean of the dependent variable = 0.601.